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This is a note on Gromov-Witten theory, following [MKKPTVVZ03, M05]. 1
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1 Topological sigma models

1.1 2d N = (2, 2) sigma model

Let x1, x2 be Euclidean coordinates, and let z = x1 + ix2 and z̄ = x1 − ix2.

2d N = (2, 2) SUSY algebra In 2d N = (2, 2) supersymmetry, there are 4 supercharges, often
denoted by Qαa with α = ± is the spinor (Lorentz) index and a = ± is the R-charge index.2 The 2d
N = (2, 2) SUSY algebra satisfies the following relations (assuming no central charges) :

{Qα+, Qβ−} = γµαβPµ

{Qα±, Qβ±} = 0.

Commutation relations with some U(1) currents are given by

[J,Q±a] = ±1

2
Q±a

[FL, Q+±] = ±1

2
Q+±

[FL, Q−±] = 0

[FR, Q+±] = 0

[FR, Q−±] = ±1

2
Q−±.

1This short note was prepared for string theory class April 22 and 24, 2019.
2We’re following notation convention in [M05] here. In [MKKPTVVZ03], Qα and Qα are used instead of Qα+ and

Qα−, respectively.

1



Here J is the current for SO(2) Lorentz transformation, and FL,R are left and right internal U(1)
(R-symmetry) currents.

Superspacetime formalism In 2dN = (2, 2) superspacetime formalism, the spacetime is (locally)
R2|(2,2). Bosonic coordinates are as usual, but there are additional fermionic coordinates θαa, α =
±, a = ±. Superfields are functions on this superspacetime. The covariant derivatives and the
supercharges act on this superfields as follows :

Dα± = ± ∂

∂θα±
∓ θα∓∂α

Qα± = ± ∂

∂θα±
± θα∓∂α.

They satisfy commutation relations

{Dα+, Dα−} = 2∂α

{Qα+, Qα−} = −2∂α

{Dαa, Qβb} = 0.

We can explicitly write down the supersymmetry transformation

δΦ = ηαaQαaΦ

in terms of components fields, but we won’t do that here. (See [M05] p.73 instead.)

2d N = (2, 2) sigma model Chiral multiplets are superfields Φ such that

Dα−Φ = 0.

Similarly anti-chiral multiplets Φ satisfy

Dα+Φ = 0.

Let’s consider a collection of d chiral multiplets ΦI and d anti-chiral multiplets ΦĪ with I, Ī = 1, · · · , d.
In terms of component fields,

ΦI = xI + θα+ψIα+ + θ−+θ++F I−+,++

ΦĪ = xĪ + θα−ψĪα− + θ+−θ−−F Ī+−,−−

Consider an action with D-term only :

S =

∫
d2zd4θK(ΦI ,ΦĪ).

Assume that ∂I∂J̄K is positive definite. Geometrically this is a sigma-model with complex d-dimensional
Kähler targetX . The local complex coordinate is given by xI , xĪ . The fermions are spinors with val-
ues in

ψ±+ ∈ Γ(Σg, x
∗TX(1,0) ⊗ S±),

ψ±− ∈ Γ(Σg, x
∗TX(0,1) ⊗ S±).

The Kähler potential is K(xI , xĪ) and the Kähler metric is given by

GIJ̄ =
∂2K

∂xI∂xJ̄
.
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1.2 Topological twisting : A-twist and B-twist

When defined on a curved surface Σg, there is no covariantly constant spinor, and the supersymme-
try is lost. However, By what is called topological twisting, we can preserve some supersymmetry in
such a way that it agrees with the origina l theory on a flat surface.

Vector and axial R-symmetry The FL,R currents combine into FV and FA currents3 :

FV := FL + FR

FA := FL − FR.

It turns out thatU(1)V is never anomalous, whileU(1)A is anomalous. Recall that the kinetic fermion
term of the action is

Sf =

∫
Σg

d2z GĪJ(ψĪ+−Dz̄ψ
J
++ + ψĪ−−Dzψ

J
−+).

The axial anomaly is measured by the index of the Dirac operator4 :

dim KerDz̄ − dim KerDz =

∫
Σg

x∗(c1(TX)).

Hence the axial anomaly vanishes iff the target is Calabi-Yau.

Topological twisting (Topological) twisting is a procedure of redefinition of the spin of the fields
using R-symmetries. There are two possible twists (up to conjugation) in our situation, called the
A-twist and the B-twist. Those twists redefine the spin current as follows :

A-twist : J̃ = J − FV
B-twist : J̃ = J + FA.

U(1)E U(1)FL U(1)FR U(1)V U(1)A A-twist U(1)′E B-twist U(1)′E
Q++ +1/2 +1/2 0 +1/2 +1/2 0 +1
Q−+ −1/2 0 +1/2 +1/2 −1/2 −1 −1
Q+− +1/2 −1/2 0 −1/2 −1/2 +1 0
Q−− −1/2 0 −1/2 −1/2 +1/2 0 0

Table 1: Summary of quantum numbers of Qαa under various U(1) symmetries

In both cases we get two scalar supercharges and a vector supercharges. Define the topological charge
to be

A-twist : QA = Q++ +Q−−

B-twist : QB = Q+− +Q−−.

Define a vector charge Gµ to be

A-twist : Gz = Q+− , Gz̄ = Q−+

B-twist : Gz = Q++ , Gz̄ = Q−+.

They satisfy the following ‘twisted SUSY’ relations :

Q2 = 0

{Q,Gµ} = Pµ.

3We follow the convention of [M05], which is slightly different from [MKKPTVVZ03].
4See p.297 of [MKKPTVVZ03].
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Cohomological field theory Let’s briefly review the topological field theories of cohomological
(a.k.a. Witten) type. A cohomological field theory is a quantum field theory on a manifold M that has
a scalar symmetry δ acting on the fields in such a way that the correlation functions do not depend
on the background metric. Two common features of cohomological field theories are :

• δ is a Grassmannian symmetry; i.e.
δ2 = 0.

• The energy momentum tensor is δ-exact; i.e.

Tµν = δGµν

for some tensor Gµν .

The metric independence of correlation functions formally follows from the second condition, be-
cause for any δ-invariant operators O1, · · · ,On,

δ

δgµν
〈O1 · · · On〉 = 〈O1 · · · OnTµν〉 = 〈O1 · · · OnδGµν〉

= ±〈δ(O1 · · · OnGµν)〉.

Here in the last line we have formally applied integration by parts and assumed that the boundary
contribution vanishes. The observables in a cohomological field theory are δ-invariant operators,
and the physical states are δ-invariant states. Observe that the twisted SUSY relations above already
partially satisfy the conditions required for being a cohomological field theory. We will see that the
twisted sigma models of type-A and B are indeed cohomological field theories.

1.3 Topological type-A model

Action The fermionic fields and the auxiliary fields change their spin after the twisting, so we
rename them as follows :

χI = ψI++, ρIz̄ = ψI−+, F Iz̄ = F I−+,++,

χĪ = ψI−−, ρĪz = ψĪ+−, F Īz = F Ī+−,−−.

The topological charge Q = QA acts on scalar fields by 5

[Q, xi] = χi, {Q,χi} = 0

The action for the theory is

SA =

∫
Σg

d2z
√
g

[
GIJ̄

(
gµν∂µx

I∂νx
J̄ − gµνρIµDνχ

J̄ − gµνρJ̄µDνχ
I − 1

2
gµνF̃ Iµ F̃

J̄
ν

)
+

1

2
gµνRĪJK̄Lρ

Ī
µρ

J
νχ

K̄χL
]

= {Q,V }+

∫
Σg

x∗ω

where
V =

∫
Σg

d2z
√
ggµνGIJ̄

[
1

2
ρIµF̃

J̄
ν +

1

2
ρJ̄µF̃

I
ν + (ρIµ∂νx

J̄ + ρJ̄µ∂νx
I)

]
.

Hence the action is a sum of a Q-exact term and a topological term.6 It follows that Tµν is Q-exact.
Therefore the twisted A-model is a topological field theory of cohomological type!

5For the full action, see p.79 of [M05] or p.409 of [MKKPTVVZ03].
6In [M05], it says that the A-model action is Q-exact, but it is wrong, as we see here that there’s topological term.
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Geometric interpretation Geometrically, we can interpret χi as the basis dxi of differential forms
on X . Then Q acts on xi and χi like the de Rham differential on X . More generally,

Oφ = φi1···ipχ
i1 · · ·χip ↔ φ = φi1···ipdx

i1 ∧ · · · ∧ dxip

Q++ ↔ ∂, Q−− ↔ ∂̄

QA = Q++ +Q−− ↔ d = ∂ + ∂̄.

It follows that
{physical operators} ' H∗dR(X).

Semi-classical approximation For a cohomological field theory withQ-exact action, semi-classical
approximation is exact. This is because

d

dt
〈O〉(t) =

d

dt

∫
DφOe−tSA(φ) = ±〈{Q,OV }〉 = 0.

In the A-model, the action was not Q-exact but a sum of a Q-exact term and a topological term. Still
we can first write the path integral as sum over topological sectors classified by

β = x∗[Σg] ∈ H2(X,Z).

Then for each topological sector we can apply the semi-classical approximation which localizes the
path integral to instantons which are holomorphic maps x : Σg → X .7 In another words, the bosonic
part of the action Sb is given by

Sb =

∫
Σg

d2zGIJ̄(∂zx
I∂z̄x

J̄ + ∂zx
J̄∂z̄x

I)

= 2

∫
Σg

d2zGIJ̄∂z̄x
I∂zx

J̄ +

∫
Σg

x∗ω ≥
∫

Σg

x∗ω = ω · β

where ω = iGIJ̄dx
I ∧ dxJ̄ is the Kähler form. The minimum is attained for holomorphic maps. In

case we have a non-trivial B-field, the action for a holomorphic map would be

Sb =

∫
Σg

x∗(ω + iB) = (ω + iB) · β.

That is, we replace the Kähler form by the complexified Kähler form ω + iB.

Correlation function Now let’s consider the correlation function :

〈O1 · · · Os〉 =
∑

β∈H2(X,Z)

〈O1 · · · Os〉β

where
〈O1 · · · Os〉β =

∫
x∗[Σg ]=β

DxDχDρ e−SO1 · · · Os.

The semi-classical approximation localizes this integral to a finite dimensional space, namely the
moduli space of holomorphic mapsMΣg(X,β). Its expected (complex) dimension is

vdimMΣg(X,β) =

∫
β
c1(TX) + (dimX)(1− g).

Let’s identify the operator Oi inserted at pi ∈ Σg by the pull-back of φi ∈ H∗(X) by the evaluation
map. Then correlation function is given by

〈O1 · · · Os〉β = e−tβ
∫
MΣg (X,β)

ev∗1φ1 ∧ · · · ∧ ev∗sφs

where tβ = (ω + iB) · β is the complexified Kähler parameter. For example, when g = 0 and β = 0,
MΣg(X,β) ' X , and we see that the correlation function is simply the classical intersection number.

7This directly follows from the localization principle saying that the path integral localizes to the loci where the Q-
variation of the fermions vanishes. In the A-model, those Q-fixed points should obey ∂z̄x = 0 and hence are holomorphic.
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Selection rule We have an obvious selection rule : the correlation function is non-vanishing only
when the sum of the degrees of the operators matches with the dimension of the moduli space. This
selection rule has a physical interpretation as well : an operatorOφi corresponding to φi ∈ Hpi,qi(X)
has vector R-charge qV = −pi + qi and axial R-charge qA = pi + qi. The selection rule

s∑
i=1

pi =
s∑
i=1

qi = c1(TX) · β + dim X(1− g)

follows from the fact that the vector R-symmetry is non-anomalous and the axial anomaly is mea-
sured by index of the Dolbeault operators, which is RHS of the selection rule.8 Note that for Calabi-
Yau X , the correlation function vanishes for g > 1. We’ll see in the next section that we can still get
meaningful invariants by coupling the theory to two-dimensional gravity.

Prepotential Suppose X is a Calabi-Yau 3-fold. The genus 0 Gromov-Witten invariants can be
encoded into a generating function called the prepotential F0 (a.k.a. the genus 0 partition function or
genus 0 Gromov-Witten potential) of non-constant maps :

F0(t) =
∑
β 6=0

N0,βQ
β

where Qi = e−ti to emphasize its dependence on Kähler parameters. The coefficients N0,β are from
the three-point functions

〈Oφ1Oφ2Oφ3〉 =

∫
X
φ1 ∪ φ2 ∪ φ3 +

∑
β 6=0

QβN0,β

∫
β
φ1

∫
β
φ2

∫
β
φ3

for (1, 1) forms φ1, φ2, φ3. We can recover all the information about three-point (or higher) functions
by differentiating the prepotential9 :

∂i∂j∂kF0(t) = Γ̄ijk(t) = C̄ijk −
∫
X
φi ∪ φj ∪ φk.

Twisted chiral ring, an example : X = CP1 Let P and Q be operators corresponding to 1 ∈
H0(CP1) and H ∈ H2(CP1). Then it is easy to see that10

〈PPQ〉 = 1

〈QQQ〉 = e−t

where t = (ω + iB) · [CP1]. All the other correlation functions vanish. It follows that the twisted
chiral ring of the CP1 sigma model is

QH∗(CP1) ' C[x]

(x2 − e−t)
.

In general, the twisted chiral ring of the CPn sigma model is

QH∗(CPn) ' C[x]

(xn+1 − e−t)
.

Observe that in the limit t→∞, the (small) quantum cohomology ring becomes the ordinary coho-
mology ring.

8In this sense, anomaly = dimension of moduli space.
9see p.533 of [MKKPTVVZ03].

10See pp.415–416 of [[MKKPTVVZ03]].
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1.4 Topological type-B model

Action Let’s assume that the target manifold X is Calabi-Yau. Let’s rename the fields as their spin
has changed after B-twist :

ρIz = ψI++, χĪ = ψĪ+−, F I = F I−+,++,

ρIz̄ = ψI−+, χ̄Ī = ψĪ−−, F Ī = F Ī+−,−−.

It is convenient to change the variables as

ηĪ = χĪ + χ̄Ī ,

θI = GIJ̄(χJ̄ − χ̄J̄).

The Q = QB acts on scalar fields by11

[Q, xI ] = 0, [Q, xĪ ] = ηĪ ,

{Q, ηĪ} = 0, {Q, θI} = GIJ̄F
J̄ .

Note that QB acts differently on holomorphic and anti-holomorphic coordinates on X! The action
for the theory is12

SB =

∫
Σg

d2z [· · · ] = {Q,V }

where V is given by

V =

∫
Σg

d2z
√
g [· · · ] .

That is, the B-model action is Q-exact!

Geometric interpretation Geometrically, we can interpret ηĪ as the basis dxĪ for the anti-holomorphic
differential forms on X . Then Q acts on xI , xĪ , ηĪ as the Dolbeault operator ∂̄ on X . More generally,

ηĪ ↔ dxĪ , θJ ↔
∂

∂xJ

Oφ = φ
J1···Jq
Ī1···Īp

ηĪ1 · · · ηĪpθJ1 · · · θJq ↔ φ
J1···Jq
Ī1···Īp

dxĪ1 ∧ · · · ∧ dxĪp ∂

∂xJ1
∧ · · · ∧ ∂

∂xJq
∈ Ω0,p(∧qTX)

QB ↔ ∂̄

It follows that the physical operators correspond to elements of the Dolbeault cohomology.

{physical operators} '
n⊕

p,q=0

H0,p(M,∧qTM).

Correlation function The selection rule says that ifφi is a (pi, qi)-form, then the correlation function
〈O1 · · · Os〉 can be non-vanishing only when

s∑
i=1

pi =
s∑
i=1

qi = d(1− g).

11For the full action, see [M05] p.83 or [MKKPTVVZ03] p.420.
12The detail is not that important, so I won’t write this down. See [M05] p. 84 instead.
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Thanks to QB-exactness of the action, the semi-classical approximation is exact. In the B-model,
there are no non-trivial instantons.13 Hence it follows that the path integral reduces to an integral
over X . The correlation function is given by

〈O1 · · · Os〉 =

∫
X
〈φ1 ∧ · · · ∧ φs,Ω〉 ∧ Ω

where Ω is a non-vanishing section of KX = Ωd,0(X). This means that the correlation functions
are not really functions but sections of a bundle on the moduli space of complex structures on the
Calabi-Yau.

B-model prepotential The moduli spaceM of different complex structures on X has dimension
h2,1. Choose a symplectic basis (Aa, B

a), a = 0, · · · , h2,1 for H3(X). That is, Aa ∩ Bb = δba. Define
the periods as

za =

∫
Aa

Ω, Fa =

∫
Ba

Ω.

Then it turns out that za are (locally) complex projective coordinates for the complex structure mod-
uliM. Of course we can introduce (local) inhomogeneous coordinates

ta =
za
z0
, a = 1, · · · , h2,1.

The function

F0(ta) =
1

z2
0

1

2

h2,1∑
a=0

zaFa

is called the B-model prepotential. In caseX is a Calabi-Yau 3-fold, the three-point function of opera-
tors corresponding to Beltrami differentials µa, µb, µc (corresponding to tangent vectors ∂

∂ta
, ∂
∂tb
, ∂
∂tc

)
is

〈O1O2O3〉 = ∂a∂b∂cF0.

Deformation of the theory Let me briefly comment on possible deformations on the theory. In
cohomological field theory, we can deform the action by adding topological operators like

W
(γn)
φ =

∫
γn

φ(n)

where γn ∈ Hn(Σ) and φ(n) is the n-th topological descendant of φ; i.e.

dφ(n) = δφ(n+1).

In particular, in our 2-dimensional worldsheet, we can consider the second descendant. In order that
this extra term we’re adding to the action has vanishing U(1)V charge, φ should have degree 2. In
case our target space X is Calabi-Yau 3-fold, this corresponds to a deformation of Kähler structure
in A-model, and a deformation of complex structure in B-model.14

2 Topological string theory

2.1 Coupling to gravity

The correlation functions we have seen in the previous chapter are examples of Gromov-Witten in-
variants. For g > 1 the correlation functions were trivial, essentially because we were considering a
fixed metric on the Riemann surface; the moduli space was too small. In order to get a non-trivial
theory for higher genus we need to couple the theory to two-dimensional gravity.

13This again follows directly from the localization principle because Q-fixed points should obey ∂µx
I = 0, meaning

that it is a constant map.
14See [MKKPTVVZ03], pp.405-406 for more detail.
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Topological string amplitude Define the genus g topological string amplitude (a.k.a. genus g free
energy) for g > 1 as follows15 :

Fg =

∫
Mg

3g−3∏
i=1

dmidmi〈
3g−3∏
i=1

G++(µi)

3g−3∏
i=1

G−−(µī)〉.

Here µi are 3g − 3 Beltrami differentials spanning the complex tangent space toMg at the point Σ,
dmi are the dual one-forms to the µi,G++, G−− are the currents corresponding toQ++ andQ−−; i.e.

T++(z, z̄) = {Q,G++(z, z̄)}, T−−(z, z̄) = {Q,G−−(z, z̄)},

and
G++(µi) :=

∫
Σg

d2z Gzzµ
z
z̄,

G−−(µī) :=

∫
Σg

d2z Gz̄z̄µ
z̄
z.

These G’s have axial charge −1 and hence cancels axial anomaly. Therefore this provides an appro-
priate measure on the moduli spaceMg. This Fg depends only on the Kähler moduli for the type-A
model, and on the complex moduli for the type-B model.

Relation to Calabi-Yau compactifications of type II string theory Recall that type II string theory
compactified on a Calabi-Yau 3-foldX is a 4dN = 2 theory. For type IIA string theory, the resulting
theory has 1 gravity multiplet, h1,1(X) vector multiplets, and 1 + h2,1(X) hypermultiplets. For type
IIB string theory, the resulting theory has 1 gravity multiplet, h2,1(X) vector multiplets, and 1 +
h1,1(X) hypermultiplets. Notice that the number of vector multiplets agree with the dimension of
the moduli that determine the prepotential F0(t) in the type-A and the type-B model. Indeed, from
the target space point of view, ti(x) is be a 4-dimensional field which is a scalar component of a vector
multiplet. It is known that topological string amplitudes on R3,1×X compute certain F-terms in the
4-dimensional effective action.

Type-A topological string The type-A topological string can be evaluated as a sum over instanton
sectors, i.e. holomorphic curves. Hence we have

Fg(t) =
∑
β

Ng,βQ
β.

Here Ng,β =
∫

[Mg,0(X,β)]virt 1 ∈ Q are the Gromov-Witten invariants. This is exactly Ig,0,β that we will
discuss below.

2.2 Mathematical description of Gromov-Witten invariants

Moduli spaceMg of stable curves For g > 1, the moduli spaceMg of Riemann surfaces of genus
g is a non-singular Deligne-Mumford stack. By including stable nodal curves, we obtain its com-
pactificationMg, the moduli space of stable curves.16 This is a compact, connected, non-singular,
irreducible Deligne-Mumford stack of (complex) dimension 3g − 3.17

Moduli spaceMg,n of stable pointed curves We can similarly compactify the moduli spaceMg,n

of n-pointed curves of genus g. Because each marked point gives one degree of freedom,

dimMg,n = dimMg + n = 3g − 3 + n.

15Due to axial charge violation, Fg ∈ Γ(L2g−2) where L is the line bundle on Mg .
16A stable curve is a connected nodal curve such that every irreducible component of geometric genus 0 (rep. 1) has at

least 3 (resp. 1) node branches. That is, it has finite group of automorphisms
17This dimension makes sense even for g = 0, 1 as virtual dimension.
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Moduli spaceMg,n(X,β) of stable maps LetX be a non-singular projective variety. A morphism
f from a pointed nodal curve Σ to X is a stable map if every genus 0 contracted component of Σ
has at least 3 special points. The moduli space of stable maps (Σ, p1, · · · , pn, f) (up to isomorphism)
such that f∗[Σ] = β ∈ H2(X,Z) is denoted by Mg,n(X,β). This is a compact Deligne-Mumford
stack. Note that there are natural n evaluation maps evi :Mg,n(X,β)→ X given by

evi : (Σ, p1, · · · , pn, f) 7→ f(pi).

The virtual dimension of the moduli space of stable maps is

vdimMg,n(X,β) = h0(Σ, f∗TX)− h1(Σ, f∗TX) + dim Def(Σ, p1, · · · , pn)− dim Aut(Σ, p1, · · · , pn)

=

∫
β
c1(TX) + (dimX)(1− g) + 3g − 3 + n =

∫
β
c1(TX) + (dim X − 3)(1− g) + n

by the Riemann-Roch theorem. Notice that whenX is Calabi-Yau 3-fold and n = 0, then this virtual
dimension is always 0.

Virtual fundamental class It is known that the moduli space of stable maps carries a virtual fun-
damental class [Mg,n(X,β)]vir ∈ H2vdim(X,Q).

Gromov-Witten invaraints We can pair the virtual fundamental class with cohomology classes
to make numerical invariants of X . Given classes γ1, · · · , γn ∈ H∗(X), the corresponding Gromov-
Witten invariant is defined by

Ig,n,β(γ1, · · · , γn) = 〈γ1 · · · γn〉Xg,β =

∫
[Mg,n(X,β)]vir

ev∗1(γ1) ∪ · · · ∪ ev∗n(γn).

Similarly, the (gravitational) descendant invariants are defined by

〈τa1(γ1) · · · τan(γn)〉Xg,β =

∫
[Mg,n(X,β)]vir

ev∗1(γ1) ∪ ψa1
1 ∪ · · · ∪ ev∗n(γn) ∪ ψann .

Hereψi := c1(Li) whereLi is the i-th tautological line bundle whose fiber at each point (Σ, p1, · · · , pn, f)
is the cotangent line to Σ at pi.

3 Further topics

3.1 Integrality : Donaldson-Thomas and Gopakumar-Vafa invariants

Gopakumar-Vafa invariants Gopakumar and Vafa made a remarkable conjecture that the topo-
logical string amplitude can be expressed in the following form :

F ′(gs, t) =
∞∑
g=0

F ′g(t)g
2g−2
s =

∑
β 6=0

ngβg
2g−2
s

∑
d≥1

1

d

(
sin(dgs/2)

dgs/2

)2g−2

Qdβ

where ngβ ∈ Z are Gopakumar-Vafa invariants (BPS invariants). These BPS invariants count (with
weight (−1)F ) the SU(2)L content of the number of BPS D2-branes with charge β ∈ H2(X,Z) in a
particular basis of the SU(2)L representation ring. This conjecture in particular says that at genus 0
each BPS state contributes

∞∑
d=1

Qdβ

d3
.

This could be understood as a sum of contributions of all the multicoverings with degree d of a given
primitive curve. The conjecture accounts to the bubbling effect as well. For instance, a genus 0 BPS
state contributes to Fg with a weight

|B2g|
2g(2g − 2)!

.
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Apparently no rigorous definition of BPS invariants is known, but it is argued that

ng−δβ = (−1)dim(Mg,δ,β)χ(Mg,δ,β)

whereMg,δ,β is the moduli space of irreducible genus g curves with δ ordinary nodes.

Donaldson-Thomas invariants Let X be a nonsingular projective Calabi-Yau 3-fold. Let In(X,β)
be the moduli space of ideal sheaves I satisfying

[Y ] = β ∈ H2(X,Z), χ(OY ) = n

where Y is the subscheme of X determined by I :

0→ I → OX → OY → 0.

The Donaldson-Thomas invariant is the integration of the dimension 0 virtual fundamental class

Ñn,β =

∫
[In(X,β)]vir

1 ∈ Z.

The partition function of the Donaldson-Thomas theory is

ZDT (q, t) =
∑
β,n

Ñn,βq
nQβ.

GW/DT correspondence Let X be a nonsingular projective Calabi-Yau 3-fold. Let F ′GW (gs, t) =∑
β 6=0

∑
g≥0Ng,βg

2g−2
s Qβ be the reduced free energy (contributions from non-constant maps). The

reduced partition function is

Z ′GW (gs, t) = exp F ′GW (gs, t) = 1 +
∑
β 6=0

Z ′GW (gs)βQ
β.

On the Donaldson-Thomas side, we have the reduced partition function

Z ′DT (q, t) =
ZDT (q, t)

ZDT (q)0

where ZDT (q)0 is the degree 0 partition function which is conjectured to be∏
n≥1

1

(1− (−q)n)n

χ(X)

.

Maulik, Nekrasov, Okounkov and Pandharipande [MNOP03] conjectured that the two reduced par-
tition functions are the same under the change of variables

Z ′GW (gs, t) = Z ′DT (−eigs , t).

Gopakumar-Vafa conjecture implies that Z ′GW (gs)β defines a series in q = e−igs with integer coef-
ficients, and GW/DT correspondence identifies this q-series with the reduced partition function of
the Donaldson-Thomas invariant.
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3.2 Open Gromov-Witten invariants

One can extend the theory to the open topological strings. The worldsheet is now a Riemann surface
Σg,h with genus g and h holes. The relevant boundary conditions are Dirichlet boundary conditions
on Lagrangian submanifoldsL ⊂ X . If we consider a topological open string theory withN topolog-
ical D-branes wrapping a Lagrangian submanifold L, then we also have U(N) Chan-Paton degrees
of freedom on the boundaries. The path integral is modified by inserting Wilson lines∏

i

Tr Pexp

∮
Ci

x∗(A)

corresponding to the boundaries. The type-A open topological string theory describes holomorphic
maps from open Riemann surfaces Σg,h to the Calabi-Yau with Dirichlet boundary conditions spec-
ified by L. The topological sectors of an open string instanton can be classified by the bulk part and
the boundary part. For the bulk part, we set

x∗[Σg,h] = β ∈ H2(X,Z).

For the boundary, we can specify the homology classes

f∗[Ci] = wi ∈ H1(L).

In the end, the free-energy of the type-A open string theory at fixed genus g and boundary data w
can be expressed as a sum over open string instantons :

Fg,w(t) =
∑
β

Fg,w,βQ
β.

The quantities Fg,w,β are open Gromov-Witten invariants.

Mathematical definition of open Gromov-Witten The basic difficulty in rigorously counting open
holomorphic curves is that while degenerations of closed curves are of real codimension 2 in moduli,
the boundary degenerations of curves with boundary are of real codimension 1 in moduli. Recent
work of Ekholm and Shende [ES19] suggests that the open Gromov-Witten invariant should take
value in the skein module of the Lagrangian brane. More precisely,

ΨX,L = 1 +
∑

uprimitive

(e
1
2
gs − e−

1
2
gs)−χ(u)w(u) ·Qu∗[Σ]

∏
a

lk(u,Li)
i 〈∂u〉 ∈ Ŝk(L)[[Q]].

Here Sk(L) :=
⊗

Qq Sk(Li), Qq = Z[q±
1
2 , (q

n
2 − q−

n
2 )−1]∞n=1, each Sk(Li) is the Qq[a

±1]-module gen-
erated by embedded framed 1-manifolds modulo isotopy and HOMFLY skein relations, and

Ŝk(L) = Sk(L)⊗Qq Q((gs))

with injective ring homomorphism determined by

q 7→ egs .

The factor (e
1
2
gs − e−

1
2
gs)−χ(u) accounts for degenerate contributions (multicovering). Ekholm and

Shende showed how Ψ behaves well under conifold transition and also that the coefficient of `1 ⊗
· · · ⊗ `1 in ΨT ∗S3,S3∪LK = ΨX̃,LK

/ΨX̃ is a monomial times 〈K〉 ∈ Sk(S3), i.e. the the HOMFLYPT
polynomial of K.
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